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Abstract
Concept drift detection techniques can be used to discover substantial changes of the patterns encoded in data streams in real-
time. If left unaddressed, these changes can render deployed machine learning models unreliable because their training data
no longer matches the patterns present in the data stream. Most algorithms proposed in the literature depend on the immediate
availability of ground truth class labels. This is unrealistic for many applications due to the associated cost of labeling.
Therefore, this study reviews the availability of fully unsupervised concept drift detectors, which can operate entirely without
labeled data. Ten algorithms are analyzed in terms of architectural choices, core ideas and assumptions about data because
they fulfilled several inclusion criteria designed to ensure faithful and reliable implementations. Seven of these algorithms
are evaluated with common concept drift detection metrics on eleven real-world data streams; the remaining three performed
too slow or depended on chance. Based on the results of these experiments, three concept drift detectors—Discriminative
Drift Detector, Image-Based Drift Detector and Semi-Parametric Log-Likelihood—can be recommended depending on the
desired target metric. This study further reveals issues with the evaluation metricsMean Time Ratio and lift-per-drift. Finally,
it highlights open research challenges.

Keywords Unsupervised concept drift detection · Non-stationary data analysis · Metrics for concept drift evaluation ·
Benchmark data streams

1 Introduction

A wealth of data is generated in real-time in the form of data
streams [1, 2], e.g., in network traffic monitoring systems
[3, 4], in internet-of-things networks [5] or in environmen-
tal observatories [6, 7]. Classic machine learning methods
operate under the assumption that data is stationary, i.e.,
that the data a model is deployed on is similar to the data
it was trained on. In long-running data, this assumption does
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not hold, when data is generated continuously and is there-
fore non-stationary. Instead, patterns encoding the incoming
data may change in such a manner that deployed models can
no longer provide reliable predictions, giving rise to a phe-
nomenon called concept drift [8].

Various methods were proposed to address the issue of
concept drift, either bymaking predictive models themselves
adaptive [9] or by detecting concept drifts with methods such
asDrift Detection Method (DDM) [10] or Adaptive Window-
ing (ADWIN) [11] to allow manual adaptation. Most concept
drift detectors proposed in the literature operate in a super-
vised manner; they monitor the predictive performance of
a classifier deployed on the data stream. These detectors
require immediate access to ground truth information about
the class labels—which is unrealistic in many applications
due to associated cost or limited accessibility. Any detec-
tor that detects concept drift without online access to class
labels of the observed data is called unsupervised. In addi-
tion to detectors which do not require labeled data at any
time, this term also applies to those concept drift detectors
which require class labels in an offline pre-training phase
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and operate without labeled data once deployed on the data
stream. The key distinction between these two approaches is
that the latter methods assume that labels are available for
pre-training and can be used for concept drift detection [12,
13].

Both supervised and unsupervised concept drift detectors
can be used in diverse real-world applications, e.g., network
intrusion detection [14, 15], spam detection [16], solar irradi-
ance forecasting [17], landslide detection [18] or predictive
maintenance [19].

Although many data streams are associated with classi-
fication tasks, which pre-trained methods such as L-CODE
[12] or EMAD [13] can leverage, other data streams come
entirely unlabeled or are otherwise not associated with any
kind of classification tasks. For this reason, this study is
concerned with fully unsupervised concept drift detectors.
For example, data streams from coastal observatories pro-
vide information from different sensors in real-time [6, 7].
Although no classification tasks are associated with these
data streams as of now, concept drift detection is desired for
these data streams to support scientific operations [20]. Vari-
ous surveys addressing supervised concept drift detection are
available [8, 21–23]. Barros and Santos benchmarked super-
vised concept drift detectors and ensembles thereof in two
studies [24, 25]. Moreover, Gemaque et al. [26] provide a
broader view on unsupervised methods, highlighting mostly
those which require labeled data in an offline pre-training
phase. A study by Suárez-Cetrulo et al. [27] reviews the state
of concept drift detectors for recurring concept drift. Finally,
Xiang et al. [28] review the state of deep learning methods
for concept drift detection, which is sparsely covered in the
other literature reviews.

Here, in addition to highlighting available methods from
the literature, 7 detectors are implemented for evaluation on a
choice of 11 real-world data streams. Common metrics from
the literature are used in this study to evaluate the predictive
performance of the detectors: The proxy metrics classifier
predictive performance [29] and lift-per-drift [30] evaluate a
concept drift detectorwith the help of a classifier deployed on
the data stream. Classifier predictive performance is known
to be flawed, as there is a bias towards more frequent detec-
tion on several real-world data streams [29]. On one data
stream ground truth information about concept drifts is avail-
able enabling the use of Mean Time Ratio, which directly
assesses the detection rate, detection time and time between
false alerts [29]. This study aims to address the following
research questions: Which detectors are available in the lit-
erature and suitable for implementation? Which detectors
detect concept drift well? Given classifier predictive per-
formance’s bias, is lift-per-drift an unbiased proxy metric?
Finally, implementing andbenchmarking these detectors also
reveals open issues with the current state of the art in both

fully unsupervised concept drift detectors and their evalua-
tion.

Hence, this study makes the following contributions:
Firstly, it provides implementations of 7 unsupervised con-
cept drift detectors, made available under the 3-clause BSD
license. Secondly, it offers extensive evaluation of these
detectors on 11 real-world data streams with several met-
rics identifying the best performing detectors. The results of
these experiments are made available alongside the source
code on GitHub1 to ensure reproducibility and enable fur-
ther research. Lastly, it provides a comparison of the different
metrics used and reveals a few open issues.

This paper is structured as follows: Firstly, a definition of
concept drift is given and different ways how concept drifts
can manifest are highlighted in Sect. 2. Then the method-
ology for the literature review is stated in Sect. 3. Section4
follows with a review of the literature, highlighting typical
architectural choices and introduces the implemented algo-
rithms. The setup of the experimental evaluation is explained
in Sect. 5 and the corresponding results are shown and are
discussed in Sect. 6. Finally, concluding remarks are given in
Sect. 8.

2 Concept drift

A concept drift denotes a change in the probability distribu-
tions governing a data stream. In contrast to outliers, which
are just a few data points outside of the regular distribution
of the data, a concept drift marks a longer lasting change.

Usually, two types of concept drift are described, real and
virtual concept drift [8]. Real concept drift means changes in
the posterior distribution such that Pt1(y | X) �= Pt2(y | X)

given t1 �= t2, t1 and t2 being different points in time. X
denotes the features of the data excluding the label or target
feature, which is denoted y instead. In contrast to this, virtual
concept drift or covariate shift denotes a change in the distri-
bution of the features: Pt1(X) �= Pt2(X), t1 �= t2. Supervised
concept drift detectors compare a classifier’s predictions ŷ
to the true class label y. In contrast to this, the unsupervised
detectors benchmarked in this study observe the features X
only because real-time access to the classification ground
truth is unrealistic in many scenarios (see Table 1). By virtue
of operating on the feature space only, these unsupervised
concept drift detectors cannot detect concept drift in the pos-
terior distribution unless it is accompanied by a covariate
shift.

Concept drifts are further characterized by the nature of
the transition from one concept to another (see Fig. 1) [8]:
Sudden or abrupt concept drifts transition from one concept
to another instantly, e.g., during extreme events such as a

1 https://github.com/DFKI-NI/unsupervised-concept-drift-detection.
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Table 1 An overview of the different spaces observed and required by
supervised, pre-trained unsupervised and fully unsupervised concept
drift detectors

Type Input Requires y

Supervised ŷ and y Always

Pre-trained Unsupervised X Offline

Fully Unsupervised X Never

Fig. 1 The transition from the current concept Pt1 to a new concept Pt2
can occur in different ways: Concept drifts can be sudden, incremental
or gradual. In contrast to these long-lasting changes in the data, an
outlier is just a single or a few data points out of the usual concept. The
Figure was adapted from [8, 23]

breach in a dike or when drifting sensors are calibrated. A
smooth transition over several time steps is called incremen-
tal. For example, temperature changes over the course of a
year can be incremental. In contrast to this, gradual concept
drift denotes transitions, during which incoming data may
come from either concept. The transition from one variant
of the SARS-CoV-2 coronavirus in the population is a grad-
ual drift, as multiple variants can coexist at the same time.
Finally, concepts may be recurring, as a data stream may
return to a concept that was observed before, e.g., the day
and night cycle in environmental data or seasonal changes
over multiple years. Recurring concepts do not character-
ize the type of change, therefore recurring concepts may be
combined with any of the kinds of concept drift.

3 Literature search

The search for literature on unsupervised concept drift
detection was conducted on Google Scholar and Semantic
Scholar ordering by recency. Literature prior to 2012 was not
included, as no publication prior to 2012 that is referenced
in the literature meets the inclusion criteria, which are given
further below. Furthermore, search results were filtered by
examining abstracts for any mention or relation to unsuper-
vised concept drift detection. Search terms were constructed
from the components highlighted in Table 2.

Since detectors needed to be implemented for the bench-
mark in this study, inclusion criteria were defined to ensure
correct implementations and to keep the required work to
a sensible level. Common issues impeding implementation
attempts are discussed in greater detail in [31]. When algo-
rithm descriptions are given in prose or are incomplete,

Table 2 Components of the search terms used in the literature search

1st component 2nd 3rd 4th

Unsupervised unlabeled Concept Drift Detection detector

Change

Shift

Search terms always consisted of 4 components for a total of 12 com-
binations

implementing the respective algorithm is difficult and may
result in many errors. Hence, these criteria filter both publi-
cations that exceed the scope of this study and those which
lack sufficient detail to allow a reliable and faithful imple-
mentation:

1. The paper must propose a detector. This criterion exists,
since several publications related to unsupervised con-
cept drift detection rely on existing algorithms without
proposing a novel algorithm themselves. These publica-
tions typically propose concept drift detection pipelines
or methods to understand the nature of the detected drift.

2. The detector must work in a fully unsupervised manner;
anymethod that requires labels is outside the scope of this
paper, as explained in the introduction (see Sect. 1).

3. The proposed algorithm must be capable of operating on
multivariate data, as most data streams are multivariate,
including all data streams used in this study’s evaluation.

4. Owing to the real-world data streams provided in [32],
detectors need to be able to perform on continuous data;
many of these data streams contain continuous features,
which some methods cannot operate on without modifi-
cations [33, 34].

5. The algorithm must be described either through a pseu-
docode listing or a single mathematical definition to
ensure reproducibility, as reconstructing an algorithm
from prose is prone to errors.

6. The algorithm must be described with sufficient detail, so
no major architectural or algorithmic choices need to be
assumed. Typical violations of this criterion include unde-
fined symbols or a lack of information on handling edge
cases such as the occasional division by zero or function
inputs that are not within the function’s domain [31].2

The literature search yielded 61 publications related to
unsupervised concept drift detection. 51 publications violate
the inclusion criteria, leaving 10 algorithms for further anal-
ysis. Table 3 highlights the distribution of inclusion criteria
violations. Note that criteria were evaluated in order 1–5 and
no further criteria were evaluated after a violation.

2 Usually, violations of this criterion only became apparent during
attempts to implement the respective detector.
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Table 3 Distribution of inclusion criteria violations by the publications
identified in the literature search, percentages rounded to 0 decimal
places

Criterion Rejections % of papers

1 6 ∼ 10

2 21 ∼ 34

3 5 ∼ 8

4 4 ∼ 7

5 12 ∼ 20

6 3 ∼ 5

Total 51 ∼ 84

Fig. 2 Common architecture of concept drift detectors consisting of
two data windows, two independent data modeling steps, a dissimilarity
measurement and finally a decision criterion (adapted from [23, 26])

4 Algorithms investigated

In this section common architectural choices of unsuper-
vised concept drift detectors are described. Afterwards the
10 detectors that passed the inclusion criteria are introduced.
In the following, the terms algorithm and detector are used
interchangeably.

4.1 Architecture

Most concept drift detectors share a common architecture
consisting of 3 to 4 components (cf. Fig. 2): Two data win-
dows, one for the most recent data and one for historical
reference data respectively, data modeling for each data win-
dow (optional), a dissimilarity measurement to measure the
similarity or dissimilarity of the data windows and finally a
drift criterion [23]. In some detectors the data modeling, dis-
similarity measurement or drift criterion steps are combined
in one step, e.g., when hypothesis tests are used directly on
the data windows.

In the following, each component is explained briefly and
common methods are given. A complete overview over the
implemented detectors’ approaches for these components is
available in Table4. Ta
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Fig. 3 Data windows are commonly maintained in one of three ways.
The recent data window always contains the most recent data. A fixed
reference window contains data gathered at the beginning of a con-
cept, whereas a sliding reference window contains data that just left the
recent window. Reservoir pooling represents a compromise by replac-
ing fixed data with data from the recent window with a certain chance.
Adaptive windowing incorporates all data until a concept drift occurs
and dynamically determines the boundary between reference data and
recent data

Data windows

All algorithms evaluated in this study deploy two data win-
dows on the data stream. The reference window is meant to
contain data from a stable concept, whereas a sliding win-
dow holding the most recent data is compared to it. If the
concept changes, the recent data in the sliding window will
change before the data in the reference window does, allow-
ing concept drift detectors to discern the two samples and
detect the concept drift. In general, larger sample sizes will
make a detector more robust to noise but increase the time
until detection, while observing smaller sample sizes has the
opposite effect. Both goals are desired, as detectors should
detect as soon as possible with as few false positives as pos-
sible, but they are directly opposed [29]. Therefore, choosing
the sample size may require a compromise.

If the detector uses a reference window, there are two
methods used by the implemented detectors and two more
methods are mentioned in the literature (see Fig. 3):

1. A fixed reference window is filled with data at the begin-
ning of the data stream and not adjusted afterwards [23].

2. A sliding reference window follows the recent data win-
dow [23].

3. Reservoir pooling [35] attempts to strike a balance
between the previous two methods by filling a fixed win-
dow first. Then, old data is replaced with data leaving the
recent data window with a certain chance.

4. Finally, adaptive windowing [11] is used as part of the
ADWIN concept drift detector. ADWIN uses a statisti-
cal test to determine if data is stationary. The boundary
between the reference data window and the recent data
window is dynamically determined using the same sta-
tistical test. While there is no concept drift, the adaptive
window grows. Once a concept drift is detected, only data
from the recent window is kept.

Although these windows are meant to represent a stable
concept, none of the publications reviewed for this study
discussed how the window sizes must be chosen to address
this intent. Instead, this hyperparameter must be provided
by the user, so they can be drawn either from experience
in the targeted application domain or are chosen arbitrarily.
Additionally, no detector that passed the inclusion criteria is
capable of dynamically adjusting window sizes like ADWIN
[11] for example.

A few implemented detectors do not keep a window of
reference data but gather sufficient data to fit models used
to assess the recent data [36–38]. For all intents and pur-
poses, these detectors can be considered detectors with fixed
reference data.

Data modeling

Data modeling techniques include methods determining
statistics of the datawindowsor estimations of the probability
density functions, for example by determining the standard
deviation or by creatingGaussianmixturemodels [39]. Some
detectorsmodel neighborhood relationships by clustering the
data, e.g., by creating clusters with a k-means algorithm
[38] or through a modified k-nearest-neighbors algorithm
[40]. Another approach includes transforming the data with
a principal component analysis to ensure the most significant
features are represented [36]. Finally, although they did not
satisfy the inclusion criteria for the benchmark, deep learning
approaches based on (variational) autoencoders are discussed
in a few publications [41–43].

Dissimilarity measurement

In order to detect a concept drift, the dissimilarity of the two
data windows needs to be assessed. Some dissimilarity mea-
surements can be applied directly on the reference data and
recent data, whereas other methods assess the modeled data
windows. Common methods include distance metrics such
as the Mahalanobis distance, log likelihood estimation [39],
density estimation [35], outlier detection rates [37] or diver-
gence measures such as the Kullback–Leibler divergence
[44]. Approaches based on deep learning often incorporate
the loss [41].

Drift criterion

Finally, the detector decides if a concept drift is present in
the data. Three options are available: Firstly, a concept drift
can be signaled if the dissimilarity measurement exceeds a
certain threshold [37, 45–47]. This threshold can be provided
as a hyperparameter or it can be determined empirically
on stationary data [46, 47]. Secondly, instead of deriving
a threshold empirically, a probability density function can
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be estimated on stationary data [38–40]. The likelihood of
dissimilarity measurements can then be determined through
the respective probability density function’s percentage point
function (ppf). If the dissimilarity measurement is in the
probability density function’s extremes, a concept drift is
detected. Thirdly, hypothesis tests like the Kolmogorov-
Smirnov two-sample test or the Page-Hinkley test can be
used [36, 44, 48, 49].

Reset

Some concept drift detectors, especially those with empiri-
cally determined thresholds, must reset and adapt to the new
concept after a drift. The simplest choice is to purge both data
windows and perform required setup steps again by gather-
ing sufficient data to train models or to determine thresholds.
Few concept drift detectors with custom tailored reset mech-
anisms exist [37, 46].

4.2 Implemented algorithms

The following section conveys the architecture and core idea
of each implemented detector as well as data requirements.
Few authors discuss the strengths and weaknesses of their
approaches. For detailed information, the reader is encour-
aged to consult the respective publication or the source code
of this study’s implementations. Table 4 gives an overview
of each detector’s respective choice concerning the previ-
ously mentioned components, data window management,
data modeling, dissimilaritymeasurement, drift criterion and
reset. The requirements and assumptionsmadeby eachdetec-
tor are summarized in Table 5.

Although they satisfy the inclusion criteria, EDFS, NN-
DVI and UCDD were not evaluated in the experiments. The
reasons therefor are given alongside the respective detector’s
description below.

Bayesian nonparametric detection method (BNDM)

BNDM[48] uses aPólya tree test to determine if the reference
data and recent data originate from the same distribution. The
two samples are partitioned recursively based on percentiles
of a normal distribution. Then, the partitions of the samples
are evaluated using the Beta function. Because the Pólya tree
test is a univariate test, BNDMapplies the test individually on
each feature. A concept drift in a single feature is sufficient to
signal a concept drift. According to the authors, the detector
is best suited for sudden changes and struggles with subtle
concept drifts.

The Pólya tree test assumes that the data are indepen-
dent and identically distributed [50]. Furthermore, it can only
operate on numerical data and demands that the data is nor-
malized.

Clustered statistical test drift detection method (CSDDM)

CSDDM[36] combines feature reductionwith clustering and
a statistical test. Once a fixed reference window contains
sufficient data, a setup is performed consisting of two major
steps: Firstly, the detector performs a principal component
analysis (PCA) to reduce the computational complexity on
fixed reference data. Secondly, centroids are fitted on the
transformed fixed data using a k-means algorithm.

After the setup is concluded, new incoming data are trans-
formed according to the PCA and assigned to the centroids.
Concept drifts are detected by comparing the recent and
reference data in each cluster using the k-sample Anderson-
Darling test [51]. Since the Anderson-Darling test is a
univariate test, this test must be performed once per com-
ponent, so n ·m times given n centroids and m components.

CSDDM requires numerical data. The k-sample
Anderson-Darling test typically assumes continuous inde-
pendent data [51], but the implementation available in
scikit-learn can operate on discrete data as well [52].

Discriminative drift detector (D3)

D3 [45] attempts to discern the reference data and the recent
data using a linear classifier. The reference data and the recent
data are assigned artificial class labels, so all reference data
belongs to one class and all recent data belongs to the other.
Then a classifier is trained on one part of the data with the
other being used to test the predictive performance. Although
a simple train/test split is mentioned in [45], the correspond-
ing source code shared by the authors performs a k-fold cross
validation. If the classifier’s predictive performance exceeds
a certain threshold, the two samples must be sufficiently dif-
ferent indicating the presence of a concept drift.

D3’s requirements depend mostly on the classifier, so in
most cases it is reasonable to assume that the detector would
prefer to work on independent and identically distributed
data. The linear classifiers proposed by the authors require
numerical data, however other classifiers could enable the
use on categorical data as well.

Ensemble drift detection with feature subspaces (EDFS)

EDFS [49] constructs an ensemble of ensembles of univari-
ate Kolmogorov-Smirnov two-sample tests. Although it is
meant to be used with labeled data to create meaningful fea-
ture subspaces, it can be used with random feature subspaces
aswell.Within each feature subspace,majority voting is used
to detect concept drifts. On the ensemble level, a single sub-
space is sufficient to detect a concept drift.

In preliminary experiments the univariate tests rarely
detected concept drift at the same time, but briefly after each
other. Hence, the hypothesis tests’ samples should only be
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Table 5 Summary of requirements and assumptions made about data by each detector in this study; a ✓indicates that the detector assumes
independent or identically distributed data respectively

Detector Data types Independence Identical distribu-
tion

Further assump-
tions

BNDM [48] Numerical ✓ ✓ Normalized data

CSDDM [36] Numerical ✓ Data should not
be normalized

D3 [45] Depends on the classifier ✓ ✓

EDFS [49] Numerical ✓ ✓ Domain expert
knowledge

IBDD [46] Numerical n/a n/a Normalization is
mentioned but not
required

NN-DVI [40] Numerical ✓

OCDD [37] Depends on the outlier detector (✓) (✓)

SPLL [39] Numerical ✓ ✓

UCDD [38] Numerical

UDetect [47] Numerical ✓ ✓

Owing to the inclusion criteria, all these methods operate on multivariate data, although BNDM, CSDDM and EDFS are ensembles of univariate
tests. Full names are provided in the text

reset once the majority of tests in a subspace voted in favor
of a concept drift. Else the detector will most likely fail to
detect any drift. The authors highlight that the detector per-
forms best for sudden concept drift, whereas longer or subtle
concept drifts are harder to detect.

Since EDFS creates random feature subspaces in the
absence of labels, the detector depends on chance to a large
degree in this study’s experiments. Preliminary tests showed
a large variance in the evaluated metrics for many configu-
rations depending mostly, if not entirely on the seed. Hence,
EDFS is not included in the experiments and evaluation.

Because it is built on an ensemble of Kolmogorov-
Smirnov tests, EDFS assumes independent and identically
distributed numerical data [49]. Furthermore, it requires
domain expert knowledge to construct the feature subspaces.

Image-based drift detector (IBDD)

IBDD3 [46] detects concept drifts based on themean-squared
deviation of the reference data and the recent data. The
detection thresholds are derived empirically by calculating
mean-squared deviations of permutations of the fixed refer-
ence data. If the mean-squared deviation of the recent data
is not within two standard deviations of the deviations cal-
culated on the permuted reference data, a concept drift is
detected. The detector requires numerical data, which may
be normalized.

3 Although its namemay suggest otherwise, this detectormay verywell
be used on non-image data.

Nearest neighbor-based density variation identification
(NN-DVI)

NN-DVI [40] detects concept drifts by determining the dis-
similarity of particles across two data samples. Particles are
constructedbydetermining thenearest neighbors of eachdata
point in the respective sample and constructing an adjacency
matrix. Afterwards, the dissimilarity between the particles of
the two samples is determined on the adjacent matrix using a
custom distance measure. Finally, a custom statistical test is
conducted to determine if a concept drift occurred. To this end
the samples are permuted repeatedly to establish a baseline
the current dissimilarity needs to exceed in order to detect a
concept drift.

NN-DVIwas not evaluated in the experiments because the
straightforward implementation of the algorithm is too slow
to allow thorough evaluation. The implementation relies on
scikit-learn [52] to determine the nearest neighbors of each
data point during the construction of the particles, which is
not optimized for repeated calculations at each time step of
a data stream.

The authors assume that data samples are independent.
Furthermore, the statistical test requires independent and
identically distributed data, which can be ensured by shuf-
fling the samples, according to the authors. Lastly, the
observed data must be numerical, as the proposed distance
measure requires numerical data.
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One-class drift detector (OCDD)

OCDD [37] assumes that an outlier detector can detect a con-
cept drift based on the rate of outliers. The authors suggest
using a one-class support vector machine [53]. This out-
lier detector is trained on a fixed window of reference data.
Afterwards, the outlier detector predicts if incoming data are
outliers or inliers. If the outlier detection rate exceeds a cer-
tain threshold, a concept drift is detected.

Requirements depend on the chosen outlier detector. The
proposed one-class support vector machine assumes inde-
pendent and identically distributed data [53], as do many
other outlier detectors. As this study’s implementation fol-
lows the suggestion ofGözüacık et al. [37], it can only operate
on numerical data.

Semi-parametric log-likelihood (SPLL)

SPLL [39] is a concept drift detector based on likelihood
estimation. In order to estimate log-likelihoods of the given
data, a Gaussian mixture model is created on the reference
data. Since the data may not support computing one covari-
ance matrix per component of the Gaussian mixture model,
the author proposes using a global covariance matrix instead.
Afterwards, the log-likelihood of incoming data is estimated.
Chi-squares quantiles are used to determine if a concept drift
is present based on a predetermined threshold.

According to the author, the detector is best suited for
detecting sudden concept drift. Furthermore, if the data can-
not be clustered well, SPLL may fail to detect concept drift
[39]. Since SPLL fits a Gaussian mixture model and com-
putes a covariance matrix, the data needs to be numerical.
The Chi-square test assumes independent and identically dis-
tributed data [54].

Unsupervised concept drift detector (UCDD)

UCDD [38] combines k-means clustering with the beta dis-
tribution to monitor change in a decision boundary. Two
centroids are fitted on both the reference and the recent data
to assign artificial class labels to the data. The resulting clus-
ters must include data from either sample. The detector then
determines the nearest data point of the other class for each
data point in the recent window and assembles them in two
sets. The number of items in each set is entered into the
cumulative distribution function (cdf) of a beta distribution.
If the resulting probability is lower than a certain threshold,
a concept drift is detected.

It is crucial that the observed data can be clustered and
even more importantly so that instances from both samples
are present in each cluster. If one sample is not present in
a cluster, the constructed set will be empty and the cdf of
beta distribution will be called with one argument being 0,

which is not within the function’s domain. The authors do not
discuss this case, so it is unclear how toproceed. Furthermore,
it is unclear how to ensure this situation does not occur or
how to determine if it can occur with a given data stream.

As is the case with NN-DVI, the straightforward imple-
mentation of UCDD for this study relies on functionality
from scikit-learn [52], in particular a k-means algorithm.
During the experiments it became apparent that this study’s
implementation is too slow to allow thorough evaluation. The
largest contributor to this issue may be repeated calculations
of the clusters, which may be alleviated by using an incre-
mental k-means algorithm.

Unsupervised change detection for activity recognition
(UDetect)

UDetect [47] observes the standard deviation in the recent
data on each feature. Hence, the data must be numerical.
Afterwards, it determines the average standard deviation
across all features and compares it to several limits. These
limits are derived from fixed reference data using Shewhart
control parameters. If the Shewart limits are exceeded, a con-
cept drift is detected. Shewhart control charts often assume
independent and identically distributed data [55, 56], how-
ever this common requirement is not discussed in [47].

As the algorithm is intended for activity recognition, the
authors propose using a dedicated detector for each activ-
ity with dedicated thresholds, respectively. Since no activity
recognition is performed in this study, a single detector is
used for global concept drift detection.

5 Experimental design and setup

In the following, the setup of the experiments is explained.
Firstly, the real-world data streams and the metrics used for
evaluation are introduced. Then, the workflow used to eval-
uate 7 of the above concept drift detectors on 11 real-world
data streams is outlined. The evaluated concept drift detectors
areBNDM, CSDDM,D3, IBDD, OCDD, SPLL andUDetect.
EDFS is not evaluated because feature subspaces would be
generated by chance, resulting in predictive performances
that depend mostly on the seed. NN-DVI and UCDD are
not evaluated, as a simple implementation using clustering
algorithms from scikit-learn is too slow for online use.

5.1 Data streams used

Althoughvarious real-world data streams are commonlyused
to evaluate concept drift detectors, data with known con-
cept drift ground truth information—which concept drifts are
present, when do they begin and end—are difficult to obtain.
In addition to offering an overview of existing data streams
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without such ground truth information, Souza et al. propose
new real-world data streams with known drift ground truth
[32]. They constructed these data streams by measuring the
wing beat frequency of insects inside an insect trap. Alter-
ing the temperature inside the trap causes changes in the
frequency. The temperate inside the trap is a hidden variable
representing the concept.Byordering the data by temperature
in a specific way, abrupt, incremental and gradual concept
drifts were induced. However, only the data streams with
abrupt concept drift feature stationary periods as well. In
the incremental and gradual data streams the temperature
changes perpetually [32].

Of the 11 insects data streams Souza et al. [32] pro-
vide, only data streams with a balanced class distribution
are used in this study because these streams are shorter than
the imbalanced oneswhilst still offering a reasonable number
of samples. Instead, more experiments on other data streams
and concept drift detector configurations can be conducted.
In addition to the five chosen insects data streams, detectors
are evaluated on six other real-world data streams without
known concept drift ground truth. An overview of the real-
world data streams used for evaluation is provided in Table
6.

5.2 Metrics

5.2.1 Mean time ratio

If the ground truth of concept drifts in a data stream is known,
the detector’s performance can be evaluated using these four
metrics [29]:

1. Missed Detection Rate (MDR) considers a concept drift
missed, if the detector does not detect a drift at any time
after the drift and before the next one. The lower theMDR
the better.

2. Mean Time to Detection (MTD) is used to evaluate the
time it takes to detect the drift. Only valid detections are
used to determine the MTD. A good detector will have a
low MTD.

3. Mean Time between False Alarms (MTFA) evaluates the
time between false detections, which occur when a con-
cept drift is detected, but the previous concept drift was
detected already. Note that the MTFA is undefined if less
than 2 false alarms occurred. The higher the MTFA the
better.

4. Finally, Mean Time Ratio (MTR) assembles the previous
three metrics:

MTR := MTFA

MTD
· (1 − MDR). (1)

The MTR respects the way the other metrics should be
interpreted, as the fraction will be larger if the MTFA is
large and theMTD is low. Moreover, a lowerMDR causes
a larger MTR. Hence, a high MTR is desirable and when
comparing two detectors, the detector with the higher
MTR performed better in general. Alas, it is undefined
if less than 2 false alarms occurred.

Depending on the application one of the individual metrics
may be more desirable than MTR. For example, in a data
stream with very long stationary periods where concept drift
occurs rarely, a high MTFA and therefore a low number of
false alerts may be preferable over a low MTD accompa-
nied bymany false alerts. Furthermore, optimizing forMTFA
likely leads to a worse MTD and MDR. In order to reduce
the number of false alerts, a detector needs to become more
robust to noise so larger changes are required to detect a con-
cept drift. Naturally, this increases the time until a drift is
detected and might result in a missed detection if the con-
cept drift is subtle. Similarly, optimizing forMTD andMDR
means making the detector more sensible to change, which
could result in an increased number of false alerts.

These metrics can only evaluate sudden concept drift. If
the evaluated concept drift is incremental or gradual and
occurs over multiple time steps, multiple issues can arise;
mostly because it is unclear how to match each detection
with the concept drift. If the detection is delayed, should it be
matched with the oldest moment of an incremental/gradual
concept drift or themost recent one? Either choice may influ-
ence MTD, MDR and MTFA, requiring further research.

Among the data streams chosen for this study, only
INSECTS (abrupt bal.) allows calculatingMTR becausemost
other data streams provide no ground truth information on
concept drifts or contain no stationary periods, thus no false
alerts can be determined.

5.2.2 Proxy metrics

If no ground truth information on concept drifts is avail-
able, concept drift detectors are commonly evaluated using a
proxy: The accuracy or F1 score of a classifier deployed with
the detector [29]. Often, the classifier is evaluated using pre-
quential testing or interleaved test-then-train, which means
that each instance is first evaluated by the classifier and
then used for further training [8]. This evaluation scheme
is used in this study, too. A common assumption is that a
better concept drift detection will result in a higher clas-
sifier performance. However, Bifet [29] demonstrated that
naively adapting the classifier every n samples will outper-
form sophisticated detectionmethods and argued that merely
comparing the classifier predictive performance is insuffi-
cient to compare concept drift detectors. In the experiments,
it can be expected that detectors with smaller window sizes
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Table 6 Data streams used in
the experiments

Data stream Samples Features Known drifts

INSECTS (abrupt bal.) 52,848 33 ✓

INSECTS (gradual bal.) 24,150 33 ∼
INSECTS (incremental bal.) 57,018 33 ∼
INSECTS (incremental-abrupt bal.) 79,986 33 ∼
INSECTS (incremental-reoccurring bal.) 79,986 33 ∼
Electricity2 45,312 8 ✗

NOAA Weather 18,159 8 ✗

Outdoor Objects 4000 21 ✗

Poker Hands 829,201 10 ✗

Powersupply 29,928 2 ✗

Rialto Bridge Timelapse 82,250 27 ✗

All data streams are provided by [32], except for Electricity2, which is included in River [57], an online
machine learning framework. In the column known drifts, a ✓ indicates that the exact position of each drift is
known such that the metrics outlined in Sect. 5.2 can be applied. In contrast, ∼ denotes that the kind of drift
is known, but the data stream contains no stationary periods featuring constant concept drift. A ✗ indicates
that some analysis may be available, but the exact nature of the concept drifts present is not known

and lower thresholds should achieve a higher classifier accu-
racy.

To account for this issue,Anderson et al. proposed lift-per-
drift (lpd) [30]. lpd takes into account the number of times
a classifier was adapted and the performance improvement
over a classifier that was not adapted at all. In the default
case, lpd is defined as

lpd :=
{

accd−acc∅
# drifts , if # drifts ≥ 1,

0 otherwise,
(2)

where accd is the accuracy of a classifier enhanced by a
concept drift detector, acc∅ is the accuracy of a classifier
without concept drift detection and #drifts is the number of
drifts detected by the drift detector.

The larger lpd, the more impactful the detected concept
drifts and subsequent adaptations of the classifierwith respect
to the number of detected drifts. Hence, the concept drift
detector with a larger lpd can be assumed to perform better.

Anderson et al. also propose a version controlled by a
hyperparameter r to adjust the required improvement each
detected drift “must provide over the last (following a geo-
metric progression)” [30]:

lpd :=
{

(accd−acc∅)(1−r)
(1−r#drifts)

, if # drifts ≥ 1,

0 otherwise,
(3)

with 0 < r < 1, which can be simplified to the definition
given in Eq.2 for r → 1. Since a hyperparameter in a metric
makes the evaluation in this study significantly more com-
plex, the default version from Eq.2 is used.

5.3 Setup

All algorithms are implemented in Python 3.8, to allow using
common data science and machine learning packages such
as numpy, pandas, and scikit-learn [52]. The online machine
learning framework River [57] provides classifiers used dur-
ing evaluation as well as classes to handle the data streams.
The full source code is available under BSD 3-clause license
on GitHub,4 to provide public access to the implemented
detectors and more importantly to support full reproducibil-
ity of the experiments and results.

Occasionally, algorithm descriptions left room for inter-
pretation. These instances and the respective implementation
choices are documented inAppendixA. For example, several
publications do not mention any reset mechanism to adapt
to the new concept after the detection of a concept drift.
As a consequence, these detectors may signal concept drifts
repeatedly until the drift cannot be detected in the data win-
dows anymore. Since two of the metrics used to evaluate the
detectors—MTR and lpd—will be adversely impacted by this
behavior, adaptation is introduced if necessary byflushing the
data windows and resetting all dependent information, e.g.,
empirically derived thresholds that determine the presence of
a concept drift. The impact of this choice on the classifier’s
accuracy is discussed in Sect. 6.3.

The workflow used to conduct the experiments is outlined
in Algorithm 1. Every detector is deployed on every data
stream with various configurations (see lines 1 to 3). A sim-
ple grid search is performed to test all permutations of the
configuration parameters detailed in Appendix B. The cho-
sen configuration parameter ranges are not meant to find the

4 https://github.com/DFKI-NI/unsupervised-concept-drift-detection.
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Algorithm 1 Experiment workflow
Require: data streams, detectors, configurations
1: for data stream in data streams do
2: for detector in detectors do
3: for config in configurations[detector] do
4: model ← detector(config)
5: classifiers ← init_classifiers()
6: drifts ← ∅
7: predictions ← ∅
8: i ← 0
9: for x, y in data stream do
10: predictions.add(classifiers(x))
11: drift ← model.detect_drift(x)
12: if drift then
13: drifts.add(i)
14: model.reset()
15: classifiers.reset()
16: end if
17: classifiers.fit(x , y)
18: i ← i + 1
19: end for
20: metrics ← evaluate(drifts, predictions)
21: end for
22: end for
23: end for

definitive best-performing configuration, but to test differ-
ent configurations to identify general trends. They are based
on the default configurations proposed by the authors of the
respective algorithms if a recommendation was given.

Alongside eachdetector four online classifiers are deployed,
two Hoeffding trees [58] and two incremental naive Bayes
classifiers [57], to allow proxy evaluation in the absence of
concept drift ground truth information. They are initialized
alongside a model of the detector parameterized with the
current configuration and data structures for evaluation (see
lines 4 to 7). Hoeffding trees and naive Bayes classifiers
are the most common choices in the concept drift detection
literature. Since these classifiers are used as means of evalu-
ation and not evaluated themselves, no further classifiers are
deployed.

On each data stream, the detected drifts and the classifiers’
predictions are recorded (see lines 10 to 13). The classifiers
are evaluated and trained using prequential testing (see lines
10 and 17), where each individual instance is used for eval-
uation before being used in training [8]. If a concept drift is
detected, the detector and the classifiers reset and adapt to
the new concept (lines 14 and 15). Finally, the metrics are
evaluated and logged in line 20. For each classifier, the F1-
score and accuracy are recorded. One of each is deployed
independently of the detector and trained on the first 1000
samples only, as theymerely provide a baseline for the calcu-
lation of lpd. The remaining Hoeffding tree and naive Bayes
classifier are trained continuously and reset when the con-
cept drift detector detects a drift by initializing a new model.

Furthermore,MDR, MTD, MTFA andMTR were determined
on the INSECTS (abrupt balanced) data stream.

Four evaluated detectors—CSDDM, D3, IBDD, SPLL—
are non-deterministic, as they depend on pseudo-randomness
for example to fit clusters or Gaussianmixturemodel compo-
nents. These detectors are deployed five times with different
seeds to gather more informative results. The UNIX times-
tamp at the time of the detector’s initialization is used as the
seed in all experiments.

All components of this study are tested with unit tests;
their interaction is further tested with integration tests. Sim-
ple function tests assure that the concept drift detectors detect
artificial drifts on a synthetic data stream consisting of one
featurewith a single concept drift. The entire experiment data
including all tested configurations, the respective seeds and
recorded metrics are available alongside the source code.

6 Results and discussion

Due to the large volume of information gathered in the exper-
iments, the results are discussed as they are presented in the
following subsections. First, results are filtered to remove
flawed configurations. Then, MTR results are presented and
discussed, followed by the same for classifier performance.
Finally, lpd results are shown and concluded by a brief expla-
nation of the difficulties encountered during analysis of the
results. Classifier accuracy and lpd are given for Hoeffding
trees; results of non-deterministic detectors are averaged.

6.1 Filtering of failed configurations

In a first step, the experimental results were filtered to
remove those results which featured no detection or periodic
concept drift detection, i.e., detection every n time steps.
Neither behavior requires intelligent detection capabilities
and certainly no concept drift detector, making these results
unsuitable for further analysis of the respective detector. The
number of configurations that exhibited either behavior is
given in Table 7 alongside the number of configurations kept
for further analysis.

The most common reasons a detector did not detect any
drift or triggered periodically are related to the observed
sample size. In the conducted experiments, filtered detec-
tors always had sample sizes on the low end or high end of
the parameter sweep. When the sample sizes are too small,
detectors are sensitive to noise. Larger sample sizes on the
other hand causeperiodic detectionwhenconcept drift occurs
again before the detector could finish its reset by filling its
data windows. Once the data windows are full, the concept
drift is already perceptible by the detector. Often, there is an
interaction of other parameters with the sample size in peri-
odic detection: As the sample size decreases, a detector may
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Table 7 The experimental
results were filtered, as no
detection and periodic detection
do not require a concept drift
detector; the number of filtered
results is given in the respective
columns

Detector No detection (%) Periodic detection (%) Rest (%)

BNDM 0 (0%) 150 (28%) 378 (72%)

CSDDM 0 (0%) 276 (16%) 1484 (84%)

D3 117 (6%) 21 (1%) 1841 (93%)

IBDD 0 (0%) 0 (0%) 3960 (100%)

OCDD 1 (0%) 106 (38%) 169 (62%)

SPLL 55 (7%) 10 (1%) 735 (92%)

UDetect 126 (45%) 18 (6%) 135 (49%)

The column Rest states the number of results kept for further analysis

Fig. 4 The percentage of configurations that failed on n, n ∈
{0, 1, . . . , 10}, data streams for all detectors. A configuration is con-
sidered failed if it returned periodic drift detection or none at all for all
seeds

no longer detect periodically unless a threshold or similar
parameter controlling the sensitivity decreases as well.

Furthermore, some detectors failed more frequently when
specific circumstances are met:

• BNDM does not performwell with few samples, showing
periodic detection behavior more regularly.

• CSDDM features a parameter controlling the number of
principal components of the samples used for concept
drift detection. Periodic detection behavior arose more
oftenwhenmore than one principal component was used.

• FilteredOCDD configurations often featured low thresh-
olds of 0.2 and 0.3 despite being recommended by the
authors [37].

• SPLL failed to detect concept drifts almost exclusively on
INSECTS (incremental balanced) when observing large
samples.

• All 126 instances of UDetect failing to detect any drift
occurred when thresholds were derived from disjoint ref-
erence windows.

Finally, the percentage of configurations that did not yield
any results on at leastn data streams is given inFig. 4. Figure4
and Table 7 show that IBDD is the only detector to feature
no filtered configurations on any data stream. It is followed
by D3 and SPLL, whereas OCDD and UDetect are shown to
be less reliable. The main architectural choice setting IBDD
apart from the other detectors is the regular adaptation of its
decision criterion.

As these results include repeat runs of non-deterministic
detectors, the mean and standard deviation of all metrics are
determined for each configuration. Although the proxy met-
rics accuracy and lpd were recorded for both aHoeffding tree
and a Naive Bayes classifier supported by the drift detector,
the following evaluation considers the metrics recorded for
the Hoeffding tree only for two reasons. Firstly, the correla-
tion of the metrics recorded for the Hoeffding tree and the
metrics recorded for the Naive Bayes classifier is strong on
all data streams. The R2 of the respective lpd values exceeds
0.95 on all data streams and 0.99 on 9 out of 11 data streams.
Even though the R2 of the accuracy values is not as high,
exceeding 0.89on8out of 11 data streams only, there is a pos-
itive correlation on all streams. On NOAAWeather, Outdoor
Objects and Powersupply the R2 is approximately 0.38, 0.64
and 0.77, respectively. Secondly, the Hoeffding tree achieves
far greater accuracy than the Naive Bayes classifier on all
evaluated data streams.

6.2 Mean time ratio

MTR is the onlymetric evaluating the predictive performance
of concept drift detectors directly. INSECTS (abrupt bal-
anced) is the only data stream in this study which can be
used to determineMTR. Although some other INSECTS data
streams contain specific information about abrupt concept
drifts as well, they all feature incremental or gradual drift
without any stationary periods. If concept drift happens con-
stantly, any detectionmust be considered correct and on time,
rendering recording detection times and false alerts a futile
effort and therefore making it impossible to determine MTR
on these data streams.
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Table 8 Best mean MTR
performances and the associated
MTFA,MTD and MDR per
detector on INSECTS (abrupt
balanced), rounded to one
decimal place

Detector MTR σ MTFA σ MTD σ MDR σ

BNDM 33.7 4927.0 146.4 0.0

CSDDM 10.6 ±1.2 2327.7 ±298.2 219.6 ±9.2 0.0 ±0

D3 104.6 ±0.0 20664.0 ±0.0 91.6 ±28.2 0.6 ±0

IBDD 7.0 ±0.0 2450.6 ±0.0 210.7 ±0.0 0.4 ±0

OCDD 7.9 3348.3 340.0 0.2

SPLL 31.2 ±0.0 5185.0 ±0.0 132.8 ±0.0 0.2 ±0

UDetect 4.7 1445.7 247.8 0.2

The absolute best performance is highlighted in bold face

Fig. 5 Although peak performances by BNDM andD3may be outliers,
many configurations significantly outperform the other detectors except
SPLL

An overview of the achieved mean MTR and the associ-
ated meanMTFA,MTD andMDR is given in Table 8. For the
latter three metrics, better performing detectors are available
individually. However, as MTR aggregates all three metrics,
performing poorly on one or two metrics has a detrimental
effect onMTR. This is further emphasized asMTFA encour-
ages different behavior compared with MTD and MDR, as
explained in Sect. 5.2.

In these experiments, D3 outperforms other detectors by
a large margin: Seven different configurations achieve a
higher MTR than the second-best detector. Apart from one
configuration, the MTR of these D3 configurations feature
standard deviations below 15. Most notably, IBDD is among
the worst performers, despite being the least filtered detec-
tor and having the most tested configurations (cf. Appendix
B.3). Figure5 shows each detector and its respective MTR
distribution on INSECTS (abrupt balanced) as a box plot.
Although the peak performances achieved by BNDM and
D3 may be outliers, many other configurations significantly
outperform the other detectors as well. The only exception
is SPLL, which performs on a similar level as BNDM.

Table 9 Correlation of MTR
and both accuracy and lpd on
INSECTS (abrupt balanced) for
all detectors

Detector R2
acc R2

lpd

BNDM 0.32 0.47

CSDDM 0.47 0.46

D3 −0.33 0.43

IBDD 0.04 0.18

OCDD 0.42 0.89

SPLL −0.34 0.32

UDetect −0.47 −0.07

Rounded to two decimal places

Because MTR cannot be determined on any of the other
data streams, classifier accuracy and lift-per-drift are eval-
uated as proxy metrics. The correlation of each of these
proxy metrics withMTR as captured by the R2 coefficient is
inconclusive (see Table 9): With only a single exception, no
detector shows a strong correlation. Furthermore, for some
detectors, a correlation may be positive on one metric and
negative on the other. In the future, experiments on com-
plex synthetic data streams and real-world data streams with
ground truth information could shed more light on the rela-
tion of the proxy metrics with ground truth metrics.

Since no other metrics are available for further evaluation
on the remaining 10 data streams, classifier accuracy and lpd
will be used for further evaluation as well. The former is a
common, albeit flawed metric used for evaluation, whereas
the latter was designed with the former’s shortcomings in
mind.

6.3 Accuracy

Before discussing the classifier’s accuracy, the impact of
adding a reset mechanism to 5 detectors must be discussed.
It can be argued that the impact is minor for four reasons,
although quantifying the impact is difficult from the results
in this study:

1. Evaluating MTR and lpd would not be possible without
the modifications.
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2. Detecting more regularly only improves accuracy to a
certain extent onmost data streams, after which the classi-
fier’s predictive performance often decreases again, likely
due to underfitting. This can be seen in Fig. 6 and the Fig-
ures in Appendix C.

3. Despite not being limited by any downtime after a detec-
tion, IBDD only shows much better accuracy on two data
streams (see Figs. 15 and 16). According to [32], thePoker
Hand data stream is mostly ordered. A brief test with
the no-change baseline motivated by Zliobaite et al. [59]
reveals that the same holds true for the Outdoor Objects
data stream. Predicting that the current instance will be
the same class as the previous one yields an accuracy of
∼ 90%despite the data streamhaving 40 different classes,
which explains IBDD’s advantage: By signaling drift reg-
ularly, the classifiers are overfitted to themost recent class,
which most of the time is the class of the next data point
as well.

4. Finally, as argued by both Bifet and Zliobaite et al. [29,
59], accuracy is a flawed proxy for evaluation of the
detected drifts.

Based on [29], it is expected that detectors achieve a higher
classifier accuracy as the number of detections increases. Fig-
ure6 exhibits a typical interaction of the number of detected
drifts and the Hoeffding tree classifier’s accuracy on the
Insects (abrupt balanced) data stream, which exhibits 5 con-
cept drifts. Similar distributions can be observed on the other
data streams (see Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33–Tables 17, 18, 19, 20, 21, 22, 23 inAppendixC), too.Gen-
erally, better accuracy results are achieved by detectors that
detect more frequently until a certain point, after which the
classifier’s predictive accuracy drops again. One likely expla-
nation for this behavior could be that the classifiers become
underfitted as they are trained on increasingly fewer data. The
exception to this is the interaction of accuracy and number of
detected drifts on the OutdoorObjects and PokerHand data
streams (shown in Figs. 15 and 16), which are ordered. The
best results for accuracy are given in Table 10. The corre-
sponding configuration for each detector-data stream pairing
are given in Appendix B.3.

With this information IBDD achieving the best accuracy
on 5 data streams can easily be explained: It is the only detec-
tor that adapts to a new concept in a way that allows it to
detect concept drifts again immediately. Hence, it can detect
more frequently than any other detector. On the INSECTS
data streams and NOAA Weather, most peak performances
are within one percentage point of the best detector. The
other data streams feature more diverse results, but often a
few other detectors come close to the best detector’s per-
formance. All detectors except for OCDD achieved peak
performance on at least two data streams. It can be assumed

Fig. 6 Accuracy of Hoeffding tree classifiers depending on the number
of concept drifts detected by the detector they are deployed with. As
detectors detect more regularly, the accuracy increases until the classi-
fier becomes underfitted. See Fig. 9 for larger resolution

that the problems presented by the different data streams
require different approaches to concept drift detection. Since
there is no obvious best algorithm, operators will need to
compare multiple options. Overall, results could be close
because classifier accuracy is the most commonly used met-
ric during the development of new concept drift detectors and
because the Hoeffding tree classifier performs well regard-
less of the detected concept drifts.

6.4 Lift-per-drift

As in Sect. 6.3, Fig. 7 shows the relation of the number of
detected drifts and lpd on the Insects (abrupt balanced)
data stream, which features 5 concept drifts. The other data
streams show similar curves (see Figs. 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29 in Appendix C). While classifier accuracy
favored a higher number of detected drifts and subsequent
adaptations, lpd appears to show a bias towards fewer detec-
tions. The emphasis on different drift detection behavior is
further shown in Table 11, which shows the R2 correlation
of the two proxy metrics across all data streams used in this
study. On seven data streams, classifier accuracy and lpd
are negatively correlated, 4 of those being strong correla-
tions with the respective R2 being less than −0.7. The two
data streams showing no correlation, INSECTS incremental
balanced and Rialto Bridge Timelapse, likely possess incre-
mental concept drift. Finally, two data streams show a weak
positive correlation of classifier accuracy and lpd.

Anderson et al. [30] designed lpd so it would not be
inflated by regular detection. Figures19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29 in Appendix C show that they achieved
this goal, however lpdr=1 seems biased the other way, as
lpd is higher the lower the number of detected drifts is.

123



International Journal of Data Science and Analytics (2025) 19:1–31 15

Table 10 Best accuracy
achieved by a Hoeffding tree
supported by the detector

Data stream BNDM CSDDM D3 IBDD OCDD SPLL UDetect

Elec2 – 0.842 0.853 0.845 0.820 0.847 0.837

INSECTS (abrupt bal.) 0.665 0.664 0.656 0.666 0.654 0.656 0.657

INSECTS (gradual bal.) 0.697 0.700 0.691 0.694 0.693 0.691 0.690

INSECTS (inc.-abrupt bal.) 0.681 0.682 0.679 0.683 0.670 0.673 0.682

INSECTS (incremental bal.) 0.572 0.568 0.561 0.566 0.563 0.561 0.566

INSECTS (inc.-reocc. bal.) 0.698 0.698 0.696 0.698 0.695 0.679 0.698

NOAA Weather 0.709 0.716 0.718 0.717 – 0.720 0.720

Outdoor Objects 0.616 0.758 0.812 0.784 0.799 0.767 0.787

Poker Hands 0.695 0.706 0.724 0.732 0.712 0.696 0.713

Powersupply 0.166 0.160 0.159 0.179 – 0.162 0.159

Rialto Bridge Timelapse 0.576 0.577 0.569 0.536 0.584 0.585 0.565

# best performances 2 2 2 5 0 2 2

Bold face indicates absolute best performance per data stream. Standard deviations are omitted because all
standard deviations are less than 0.007

Fig. 7 Lift-per-drift of Hoeffding tree classifiers, depending on the
number of concept drifts detected by the detector they are deployed
with. The lower the number of detected drifts, the higher the lift-per-
drift. INSECTS (abrupt balanced) exhibits 5 concept drifts. See Fig. 20
for larger resolution

The correlations in Table 11 show that the relation is not
entirely direct, especially given the weak positive correla-
tion on NOAA Weather and Powersupply.

The best results in terms of lpd are given in Table 12. Here,
D3 and SPLL are the best performing concept drift detectors,
followed by OCDD and UDetect.

In depth comparison of the detectors seems difficult, given
the bias towards fewer detections and adaptations, unless
the number of detected drifts is very close. This rarely hap-
pened for the peak performers, but occasionally happened
for other configurations. Examination of Figs. 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29 provided in Appendix C reveals
that many configurations of CSDDM, D3 and SPLL pro-
vide better concept drift detection than others on some of
the data streams, as they achieve a higher lpd at a similar

Table 11 Correlation of accuracy and lpd as captured by the R2 coef-
ficient for all data streams

Data stream R2

Elec2 −0.74

INSECTS (abrupt bal.) −0.42

INSECTS (gradual bal.) −0.65

INSECTS (incremental-abrupt bal.) −0.79

INSECTS (incremental bal.) 0.1

INSECTS (incremental-reoccurring bal.) −0.68

NOAA Weather 0.43

OutdoorObjects −0.86

Poker Hands −0.78

Powersupply 0.31

Rialto Bridge Timelapse −0.01

Rounded to two decimal places

number of detected drifts or a similar lpd at a higher number
of detected drifts.5 These findings are supported by 6 data
streams, as INSECTS (incremental-abrupt bal.), INSECTS
(incremental-reocc. bal.), NOAA Weather and Poker Hands
have no or very few close results in this regard. Furthermore,
D3 performs worse on Powersupply.

Finally, it is unclear what type of concept drift is present
and where concept drift is located in many of the real-world
data streams. This issue is not restricted to lpd and applies to
classifier accuracy as well, although considering the number
of detected drifts is a rare occurrence in the literature. Again,
obtaining more real-world data streams with detailed knowl-
edge about the position and nature of their concept drifts is a

5 Simply put: Because lpd determines the accuracy improvement per
detected drift, configurations with a similar number of detected drifts
or a similar lpd can be compared. The configuration further to the right
or further up performed better, respectively.
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Table 12 Best performance in terms of mean lpd

Data stream BNDM CSDDM D3 IBDD OCDD SPLL UDetect

Elec2 – 0.0037 0.0073 0.0037 0.0028 0.0033 0.0060

INSECTS (abrupt bal.) 0.0166 0.0080 0.0361 0.0223 0.0090 0.0386 0.0063

INSECTS (gradual bal.) 0.0660 0.0473 0.3091 0.1540 0.3195 0.1564 0.0289

INSECTS (incremental-abrupt bal.) 0.0152 0.0090 0.1651 0.0034 0.0154 0.0784 0.0797

INSECTS (incremental bal.) 0.0760 0.0307 0.3628 0.3565 0.0275 0.1768 0.0145

INSECTS (incremental-reocc. bal.) 0.0184 0.0109 0.3685 0.0057 0.0322 0.1004 0.0147

NOAA Weather 0.0045 0.0028 0.0142 0.0011 – 0.0549 0.0549

Outdoor Objects 0.1050 0.1143 0.1972 0.0382 0.2051 0.1073 0.0540

Poker Hands 0.00009 0.00018 0.00010 0.00003 0.00016 0.00026 0.00064

Powersupply 0.0019 0.0008 0.0024 0.0002 – 0.0217 0.0007

Rialto Bridge Timelapse 0.0025 0.0017 0.0022 0.0007 0.0026 0.0028 0.0025

# best performances 0 0 4 0 2 4 2

Bold face indicates absolute best performance per data stream. Standard deviations are omitted for better readability, but can be accessed in the
study’s repository

Table 13 Concepts of the
SineClusters synthetic data
stream

Concept Features

1 sin cos sin cos

2 -sin cos sin cos

3 -cos -cos sin cos

necessity for meaningful analysis of (unsupervised) concept
drift detectors, as the current modes of observation are biased
or appear cumbersome and prone to error.

6.5 Verification on synthetic data

Few synthetic data streams as provided by River [57] and
MOA [60] are suitable for the evaluation of unsupervised
concept drift detectors. Often they introduce concept drift
exclusively by changing the function generating the data
stream’s class labelwithout adjusting the feature distribution.
Since unsupervised concept drift detectors operate solely on
the feature space, they cannot detect these changes. Others
exhibit perpetual concept drift without ever offering a sta-
tionary concept. As a consequence, two new synthetic data
streams are used to verify the issues highlighted before.

The first data stream is a modification of the Waveform
data streamprovided byRiver [57]. This data stream, denoted
WaveformDrift2, generates 21 features driven by waveform
functions. In addition to the original waveform function tuple
h, threemodified concepts h+6, 6−h and−h are used. Con-
cept drift is introduced by changing the waveform functions,
which causes a concept drift in P(X , y), affecting both the
feature space X and the label space. The other data stream,
SineClusters consists of four features generated by sine or
cosine functionswith a period of 500; the third and fourth fea-
ture are noise. There are three different classes generated by

two centroids each, which are randomly scattered in the data
space. Features are assigned a class label by determining the
closest centroid’s class by Euclidean distance. This stream
also features Gaussian noise withμ = 0 and σ = 0.25. Con-
cept drift is introduced by changing the first two functions
and generating new centroids (see Table 13).

Both data streams featured abrupt concept drift every 5000
time steps to ensure that every detector had a chance to prop-
erly reset and become ready to detect again. The streamswere
executedwith a run timeof 154,987 samples, including a total
of 30 concept drifts. No incremental or gradual concept drift
was included, as no evaluation approach exists to leverage
the availability of ground truth concept drift information in
these cases.

Whereas WaveformDrift2 has uniformly distributed fea-
tures and changes each parameter’s value range, SineClusters
poses a different challenge as it changes merely the dis-
tribution of the features without adjusting their ranges.
Furthermore, SineClusters is seasonal owing to the use of
the sine and cosine functions.

Figures30, 32 and 33 show that the same biases for accu-
racy and lpd are present in synthetic data.Merely Fig. 31 does
not exhibit the same bias, but the evaluation with a Hoeffd-
ing tree classifier’s accuracy remains flawed and difficult.
Despite detecting more often than 30 times, many detectors
achieve an accuracy similar to that of detectors which more
reliably predict the true concept drifts. On SineClusters, con-
figurations which detected periodically or yielded very low
MTR often had sample sizes of 100 and 250, which is lower
than the period of the sine functions used in the data stream.

The comparison of accuracy and lpdwithMTR is difficult,
becausemanydetectors raised no false alarms.Consequently,
the MTR remains undefined (cf. Table 14). Arguably, this
shows the need for more reliable evaluation approaches.
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Table 14 Best meanMTR
performances and the associated
MTFA,MTD and MDR per
detector on the synthetic data
streams SineClusters and
WaveformDrift2, rounded to
zero decimal places

Detector SineClusters WaveformDrift2
MTR MTFA MTD MDR MTR MTFA MTD MDR

BNDM – – 94 0 – – 35 0

CSDDM 84 3642 54 0 50 2102 40 0.07

D3 47 8123 171 0 – – 29 0

IBDD 2 3438 880 0.26 58 629 11 0

OCDD 10 1871 187 0 7 1237 189 0

SPLL – – 251 0 – – 6 0

UDetect – – 5 0.28 – – 2 0

The absolute best performance on each data stream is highlighted in bold face

7 Open research challenges

This study reveals several open research challenges, which
should be addressed in future work. Firstly, there is no simple
evaluation approach available to assess the quality of concept
drift detection when ground truth information is available,
as MTR and MTFA are undefined when less than two false
alarms are raised. Furthermore, no approach exists to evalu-
ate data streams with incremental and gradual concept drift.
Therefore, evaluation is restricted to proxy metrics even on
synthetic data streams, which provide ground truth infor-
mation. The MTR metrics are difficult to use to evaluate
non-abrupt concept drift because it is unclear how concept
drift and prediction should be matched if the concept drift
lasts longer than one time step.

Secondly, most synthetic data streams provided in frame-
works such as River [57] or MOA [60] are not suitable for
the evaluation of (fully) unsupervised concept drift detec-
tors, since they feature concept drift only in P(y|X). This is
commonly done by changing a function generating the class
label without adjusting the feature generation. Unsupervised
concept drift detectors cannot detect these changes, as they
operate solely on the feature space X . Hence, more complex
synthetic data streams are required to reliably test unsuper-
vised concept drift detectors.

Thirdly, non-abrupt concept drift detection may require
more thorough research. Many detectors evaluated in this
study purge their datawindows after detecting a concept drift.
However, it is unclear if this behavior is suitable for incre-
mental and gradual concept drift. If concept drift continues
after a detector’s reset, adaptation of other models will begin
too early and may result in diminished predictive capabili-
ties.

Fourthly, if above problem is verified, the question arises
on how to combine abrupt, incremental and gradual concept
drift detection in a single system. This might also include
being able to discern the different types of drift.

Fifthly, analysis of experiment results showed that the
size of the observed samples is one of the most impactful
hyperparameters; as does a glance at the best performing

configurations given in Appendix B.3. Since most concept
drift detectors construct observe samples in a similar way
that is agnostic to the detector’s specific ideas, methods to
automatically determine sample sizes as ADWIN [11] or
a modification of SPLL [61] could be worthwhile. Further
research into ensuring concepts are properly represented
in the reference data window may reveal new approaches
to selecting window sizes. Likewise, methods to automati-
cally derive decision thresholds from observed samples are
available, but not leveraged by most concept drift detectors
analyzed in this study.

Finally, this study used a grid search to evaluate different
configurations. Consequently, many unsuitable configura-
tions were tested and used up resources during evaluation.
In the future, testing driven by AutoML approaches could
yield better results whilst being more efficient [62]. Multi-
objective optimization [63] could assist in balancingmultiple
opposed objectives such as fast concept drift detection,
robustness to noise and good computational performance.

8 Conclusion

This study examined 61 publications related to unsupervised
concept drift detection. It focused on detectors that can oper-
ate entirely without labeled data to detect substantial changes
in data streams that could render predictivemodels unreliable
or inaccurate if unaddressed. 10 publications provided a fully
unsupervised algorithm and fulfilled further inclusion crite-
ria ensuring that a reliable and faithful implementation was
possible, e.g., because no major architectural choices needed
to be assumed and the algorithm’s description was complete.
It was confirmed that these detectors adhere to a common
concept drift detector architecture established in prior liter-
ature reviews [23, 26]. Furthermore, common choices for
the architectural components as well as explanations of each
detector’s design were given.

7 out of 10 concept drift detectors were evaluated on
11 established real-world data streams [32] retrieved from
the literature; the remaining 3 could not be evaluated for
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Table 15 Strengths and
weaknesses of the different
detectors with respect to MTR,
accuracy and lpdr=1

Detector MTR acc lpd Other qualities

BNDM ++ + o Cannot detect changes in covariance

CSDDM + + +

D3 + + ++ Sensitive to noise

IBDD – ++ – No downtime due to resets

OCDD – o – Sensitive to noise

SPLL ++ + ++

UDetect + + –

In comparison with other the other concept drift detectors, a + indicates better performance, a – indicates
worse performance and o denotes neutral performance

Table 16 Key findings
concerning the metrics MTR,
accuracy and lpdr=1

MTR Accuracy lpdr=1

Proxy metric ✗ ✓ ✓

Requirement Ground truth Class labels Class labels

Data streams 1 11 11

Bias – More detections Fewer detections

Range [0,∞] [0, 1] [−1, 1]
Comparable on Same data stream Similar #detections Similar #detections

Detectors BNDM, D3, SPLL IBDD, others CSDDM, D3, SPLL

practical reasons such as a slow computational performance
of this study’s implementation or an excessive dependence
on chance. In these experiments, the proxy metrics classi-
fier accuracy and lift-per-drift (lpd) [30] were recorded to
evaluate the concept drift detectors. The key findings are
summarized in Tables 15 and 16. On one data stream,Mean
Time Ratio (MTR) [29] was available to directly assess the
detected concept drifts. The results reveal that Image-Based
Drift Detector (IBDD) [46] achieves great classifier predic-
tive performance on many data streams, although it does not
perform as well when assessed with lpd andMTR. HereDis-
criminative Drift Detector (D3) [45] and Semi-Parametric
Log Likelihood (SPLL) [39] showed the best results on most
data streams, whilst also achieving good classifier predic-
tive performance in general. Hence, these might be the most
sensible detectors for initial deployment in a situation with
limited knowledge about the concept drift. Finally, the results
of these experiments reinforce that classifier predictive per-
formance is biased in favor of a higher number of detected
concept drifts and adaptations. This study also shows that
lpdr=1 is likewise biased, as the version used in this study
evidently favors fewer detected concept drifts.

Beyond benchmarks, this study highlights a few open
research challenges, which are concerned among others with
the evaluation of non-abrupt concept drift, approaches to
choosing sample sizes orAutoML for concept drift detection.
While these challenges pose grander questions, some minor
next steps remain for the implementations provided with
this study. Firstly, the computational performance of some

detectors could be improved, e.g., by changing clustering
methods to incremental versions. This would enable com-
putational performance benchmarks as planned by Werner
et al. [64]. Secondly, the best performing detectors could
be included in online machine learning frameworks or con-
cept drift detection frameworks. Finally, the implementations
made available with this study could be used to create a het-
erogeneous ensemble of concept drift detectors.

Supplementary Information All source code used in
this study, including model configurations and used ran-
dom seeds, is available under https://github.com/DFKI-NI/
unsupervised-concept-drift-detection.
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Appendix A Implementation details

In some publications the algorithm description left room for
implementation or was at odds with the source code provided
by the authors. Furthermore, some algorithms do not adapt to
the new concept after a drift. These cases and the respective
choices concerning this study’s implementation are outlined
below. To understand some of these implementation choices,
more in-depth study of the respective publication or the algo-
rithm’s source code may be required.

BNDM

The source code provided by the authors of BNDM uses
a Matlab implementation of the Pólya tree test by Caron
[65]. In this implementation the data is normalized using the
median and the interquartile range. If the 25% and the 75%
element have the same value, this will lead to a division by
zero,which is not addressed by the authors ofBNDM [48] nor
by Caron. In this case, this study’s implementation subtracts
the median from the sample without adjusting its range.

The paper and Caron’s Matlab implementation provide
different information on the return value when the maximum
recursion depth is reached. This study uses the same value
as the Matlab implementation.

A reset mechanism that purges the data windows after a
concept drift was added, as explained in Sect. 5.3.

CSDDM

Occasionally, one of the samples generated for evaluation
with the k-sample Anderson-Darling test may be empty. As
there is no information regarding this issue in the paper, the
hypothesis test is skipped in this case and no concept drift is
detected.

IBDD

The authors mention normalization specifically for images,
by which they mean transforming the image to grayscale
[46]. Since there are no further mentions of normalization,
the data is not normalized in this study’s implementation.

SPLL

As part of the Gaussian mixture model a covariance matrix is
determined. From the publication, it is not quite clear if this
covariance matrix is computed over the entire data or only
the reference data. Since the Gaussian mixture model is fit
on the reference data only, the implementation for this study
computes the covariance matrix on the reference data only as
well. A reset mechanism was added by purging the reference
data window, as explained in Sect. 5.3.

UDetect

A reset mechanism that purges the data windows and resets
the thresholds after a concept drift was added, as explained
in Sect. 5.3.

Appendix B Configurations

Appendix B.1 Classifiers

Riverwas used in version 0.11.1. Both theHoeffding tree and
the naive Bayes classifiers were deployed using the default
configuration.

Appendix B.2 Concept drift detector configurations

BNDM

• const: 0.5, 1.0
• max_depth: 2, 3
• n_samples: 100, 250, 500, 1000
• threshold: 0.45, 0.5, 0.55

48 combinations (deterministic)
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CSDDM

• confidence: 0.05, 0.01
• feature_proportion: 0.1, 0.01
• n_clusters: 2, 3
• n_samples: 100, 250, 500, 1000

32 combinations (non-deterministic → 160 runs)

D3

• n_reference_samples: 50, 125, 250, 500
• n_recent_samples_proportion: 0.1, 0.5, 1.0
• threshold: 0.6, 0.7, 0.8,

36 combinations (non-deterministic → 180 runs)

IBDD

• n_consecutive_deviations: 1, 4
• n_permutations: 10, 20, 40
• n_samples: 100, 250, 500, 1000
• update_interval: 50, 100, 250

72 combinations (non-deterministic → 360 runs)

OCDD

• n_samples: 100, 250, 500, 1000
• threshold: 0.2, 0.3, 0.4, 0.5
• outlier detector: OneClassSVM (from sklearn)
• outlier_detector_kwargs: {’nu’: 0.5, ’kernel’: ’rbf’,
’gamma’: ’auto’}

16 combinations (deterministic)

SPLL

• n_clusters: 2, 3
• n_samples: 100, 250, 500, 1000
• threshold: 0.05, 0.005

16 combinations (non-deterministic → 80 runs)

UDetect

• disjoint_training_windows: True

– n_samples: 50, 100, 250, 500
– n_windows: 25, 50, 100

• disjoint_training_windows: False

– n_samples: 100, 250, 500, 1000
– n_windows: 50, 100, 250

12 + 15 = 24 combinations (deterministic)

Appendix B.3 Best configurations

This appendix gives the configurations for the results high-
lighted in Tables 8, 10 and 12.

Fig. 8 Accuracy increases with number of detected drifts until a certain
point
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Table 17 Best performing
configurations of BNDM

Data stream Metric n_samples const threshold max_depth

INSECTS (abrupt bal.) MTR 250 1.0 0.55 3

lpd 1000 0.5 0.55 2

acc 500 1.0 0.55 2

INSECTS (gradual bal.) lpd 1000 0.5 0.55 2

acc 100 0.5 0.5 2

INSECTS (incremental-abrupt bal.) lpd 1000 1.0 0.55 2

acc 250 0.5 0.45 2

INSECTS (incremental bal.) lpd 500 1.0 0.45 3

acc 500 0.5 0.45 2

INSECTS (incremental-reoccurring bal.) lpd 1000 1.0 0.45 2

acc 100 1.0 0.45 3

NOAA Weather lpd 1000 0.5 0.45 2

acc 250 0.5 0.55 3

Outdoor Objects lpd 1000 0.5 0.45 2

acc 100 0.5 0.45 2

Poker Hands lpd 250 1.0 0.45 3

acc 100 0.5 0.5 3

Powersupply lpd 1000 1.0 0.55 3

acc 500 0.5 0.45 3

Rialto Bridge Timelapse lpd 500 1.0 0.5 3

acc 100 0.5 0.55 3

Table 18 Best performing configurations of CSDDM

Data stream Metric n_samples n_clusters confidence feature_proportion

Elec2 lpd 1000 2 0.01 0.1

acc 100 3 0.05 0.1

MTR 500 3 0.01 0.01

INSECTS (abrupt bal.) lpd 1000 3 0.01 0.01

acc 100 2 0.01 0.01

INSECTS (gradual bal.) lpd 1000 3 0.01 0.01

acc 250 2 0.05 0.01

INSECTS (incremental-abrupt bal.) lpd 1000 2 0.01 0.01

acc 500 2 0.01 0.1

INSECTS (incremental bal.) lpd 1000 3 0.01 0.01

acc 500 2 0.05 0.01

INSECTS (incremental-reoccurring bal.) lpd 1000 3 0.01 0.01

acc 250 3 0.05 0.01

NOAA Weather lpd 1000 3 0.01 0.01

acc 250 2 0.05 0.1

Outdoor Objects lpd 1000 2 0.01 0.01

acc 100 3 0.01 0.01

Poker Hands lpd 1000 3 0.01 0.01

acc 100 2 0.05 0.1

Powersupply lpd 1000 3 0.01 0.01

acc 1000 2 0.01 0.01

Rialto Bridge Timelapse lpd 500 2 0.01 0.01

acc 100 2 0.01 0.01
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Table 19 Best performing configurations of D3

Data stream Metric n_reference_samples recent_samples_proportion threshold

Elec2 lpd 500 1.0 0.8

acc 50 0.1 0.7

MTR 125 1.0 0.8

INSECTS (abrupt bal.) lpd 50 0.5 0.8

acc 500 0.1 0.6

INSECTS (gradual bal.) lpd 125 1.0 0.8

acc 250 0.1 0.6

INSECTS (incremental-abrupt bal.) lpd 125 1.0 0.8

acc 250 0.1 0.6

INSECTS (incremental bal.) lpd 500 1.0 0.6

acc 500 0.1 0.6

INSECTS (incremental-reoccurring bal.) lpd 125 1.0 0.8

acc 125 0.5 0.6

NOAA Weather lpd 500 1.0 0.8

acc 250 0.5 0.6

Outdoor Objects lpd 500 0.5 0.7

acc 50 0.5 0.6

Poker Hands lpd 500 0.5 0.8

acc 50 1.0 0.6

Powersupply lpd 500 1.0 0.8

acc 250 0.1 0.8

Rialto Bridge Timelapse lpd 500 1.0 0.8

acc 125 0.1 0.6

Appendix C Figures

This appendix contains figures detailing how the number of
detected drifts affects accuracy and lift-per-drift.

On all but two data streams, detecting more frequently
increases the Hoeffding tree’s accuracy until a certain point.
On Poker Hands and Outdoor Objects the accuracy keeps
increasing with the number of detected drifts, as the data
streams are mostly ordered (cf. Sect. 6.3).

On all data streams detecting less frequently increases lift-
per-driftmeasured on theHoeffding tree classifiers in a graph
that resembles a negative exponential or logarithmic behavior
with a few minor outliers.

Fig. 9 Accuracy increases with number of detected drifts until a certain
point
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Table 20 Best performing configurations of IBDD

Data stream Metric n_samples n_consec._deviations n_permutations update_interval

Elec2 lpd 250 4 10 250

acc 1000 4 10 100

MTR 1000 4 10 50

INSECTS (abrupt bal.) lpd 1000 4 40 50

acc 250 4 40 250

INSECTS (gradual bal.) lpd 1000 4 40 50

acc 100 1 40 250

INSECTS (incremental-abrupt bal.) lpd 1000 4 10 50

acc 1000 4 40 250

INSECTS (incremental bal.) lpd 1000 4 40 50

acc 1000 4 40 100

INSECTS (incremental-reoccurring bal.) lpd 1000 4 10 50

acc 100 4 10 250

NOAA Weather lpd 500 1 10 250

acc 500 1 20 250

Outdoor Objects lpd 1000 4 10 250

acc 250 1 40 50

Poker Hands lpd 100 4 40 250

acc 250 1 10 50

Powersupply lpd 500 4 10 250

acc 500 1 10 50

Rialto Bridge Timelapse lpd 1000 4 40 250

acc 1000 1 20 250

Table 21 Best performing
configurations of OCDD

Data stream Metric n_samples threshold

Elec2 lpd 1000 0.5

acc 500 0.5

MTR 1000 0.5

INSECTS (abrupt bal.) lpd 1000 0.5

acc 500 0.4

INSECTS (gradual bal.) lpd 500 0.5

acc 500 0.4

INSECTS (incremental-abrupt bal.) lpd 1000 0.5

acc 500 0.3

INSECTS (incremental bal.) lpd 1000 0.5

acc 1000 0.5

INSECTS (incremental-reoccurring bal.) lpd 1000 0.5

acc 500 0.3

Outdoor Objects lpd 1000 0.4

acc 100 0.3

Poker Hands lpd 1000 0.5

acc 100 0.5

Rialto Bridge Timelapse lpd 1000 0.5

acc 250 0.2
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Table 22 Best performing
configurations of SPLL

Data stream Metric n_samples n_clusters threshold

Elec2 lpd 1000 3 0.005

acc 100 2 0.05

MTR 500 2 0.05

INSECTS (abrupt bal.) lpd 1000 2 0.005

acc 100 3 0.005

INSECTS (gradual bal.) lpd 250 2 0.005

acc 100 3 0.005

INSECTS (incremental-abrupt bal.) lpd 500 2 0.005

acc 100 3 0.005

INSECTS (incremental bal.) lpd 250 2 0.05

acc 100 3 0.005

INSECTS (incremental-reoccurring bal.) lpd 1000 3 0.005

acc 100 3 0.05

NOAA Weather lpd 250 2 0.005

acc 250 2 0.005

Outdoor Objects lpd 1000 2 0.005

acc 100 2 0.005

Poker Hands lpd 1000 3 0.005

acc 100 2 0.05

Powersupply lpd 1000 2 0.005

acc 100 3 0.05

Rialto Bridge Timelapse lpd 1000 2 0.005

acc 100 2 0.005

Fig. 10 Accuracy increases with number of detected drifts until a cer-
tain point

Fig. 11 Accuracy increases with number of detected drifts until a cer-
tain point
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Table 23 Best performing configurations of UDetect

Data stream Metric n_samples n_windows disjoint_training_windows

Elec2 lpd 1000 250 False

acc 250 50 False

MTR 1000 250 False

INSECTS (abrupt bal.) lpd 2000 250 False

acc 500 250 False

INSECTS (gradual bal.) lpd 100 250 False

acc 500 100 False

INSECTS (incremental-abrupt bal.) lpd 250 25 True

acc 500 250 False

INSECTS (incremental bal.) lpd 2000 250 False

acc 2000 250 False

INSECTS (incremental-reoccurring bal.) lpd 500 25 True

acc 500 100 False

NOAA Weather lpd 50 25 True

acc 50 25 True

Outdoor Objects lpd 100 250 False

acc 100 50 False

Poker Hands lpd 100 250 False

acc 100 100 False

Powersupply lpd 1000 100 False

acc 1000 50 False

Rialto Bridge Timelapse lpd 1000 250 False

acc 100 100 False

Fig. 12 Accuracy increases with number of detected drifts until a cer-
tain point

Fig. 13 Accuracy increases with number of detected drifts until a cer-
tain point
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Fig. 14 Accuracy increases with number of detected drifts until a cer-
tain point

Fig. 15 Accuracy increases with number of detected drifts

Fig. 16 Accuracy increases with number of detected drifts

Fig. 17 Accuracy increases with number of detected drifts until a cer-
tain point

Fig. 18 Accuracy increases with number of detected drifts until a cer-
tain point

Fig. 19 Lift-per-drift increases as the number of detected drifts
decreases
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Fig. 20 Lift-per-drift increases as the number of detected drifts
decreases

Fig. 21 Lift-per-drift increases as the number of detected drifts
decreases

Fig. 22 Lift-per-drift increases as the number of detected drifts
decreases

Fig. 23 Lift-per-drift increases as the number of detected drifts
decreases

Fig. 24 Lift-per-drift increases as the number of detected drifts
decreases

Fig. 25 Lift-per-drift increases as the number of detected drifts
decreases
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Fig. 26 Lift-per-drift increases as the number of detected drifts
decreases

Fig. 27 Lift-per-drift increases as the number of detected drifts
decreases

Fig. 28 Lift-per-drift increases as the number of detected drifts
decreases

Fig. 29 Lift-per-drift increases as the number of detected drifts
decreases

Fig. 30 Accuracy increases as the number of detected drifts increases.
This synthetic stream has 30 concept drifts

Fig. 31 Accuracy does not increase as the number of drifts increases.
This synthetic stream has 30 concept drifts
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Fig. 32 Lift-per-drift increases as the number of detected drifts
decreases. This synthetic stream has 30 concept drifts

Fig. 33 Lift-per-drift increases as the number of detected drifts
decreases. This synthetic stream has 30 concept drifts
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